Programmatic Access#

Important

Before using any programmatic access to the data, you first need to set up your CAVEclient token.

CAVEclient#

Most programmatic access to the CAVE services occurs through CAVEclient, a Python client to access various types of data from the online services.

Full documentation for CAVEclient is available here.

To initialize a caveclient, we give it a datastack, which is a name that defines a particular combination of imagery, segmentation, and annotation database.

For V1DD public data, use the datastack name v1dd_public

from caveclient import CAVEclient
datastack_name = 'v1dd_public'
client = CAVEclient(datastack_name)

# set version, for consistency across time
client.materialize.version = 1196 # Current as of Summer 2025

# Show the description of the datastack
client.info.get_datastack_info()['description']

For the MICrONs public data, we use the datastack name minnie65_public.

from caveclient import CAVEclient
datastack_name = 'minnie65_public'
client = CAVEclient(datastack_name)

# set version, for consistency across time
client.materialize.version = 1507 # Current as of Summer 2025

# Show the description of the datastack
client.info.get_datastack_info()['description']
'This is the publicly released version of the minnie65 volume and segmentation. '

The rest of this tutorial entry will use the MICrONS dataset. The same functions apply to both datasets, however the table names may differ. Refer to the Key Annotation Tables pages for the respective datasets

Materialization versions#

Data in CAVE is timestamped and periodically versioned - each (materialization) version corresponds to a specific timestamp. Individual versions are made publicly available. The Materialization client allows one to interact with the materialized annotation tables that were posted to the annotation service. These are called queries to the dataset, and available from client.materialize. For more, see the CAVEclient Documentation.

Periodic updates are made to the public datastack, which will include updates to the available tables. Some cells will have different pt_root_id because they have undergone proofreading.

Important

For analysis consistency, is worth checking the version of the data you are using, and consider specifying the version with client.version = your_version

Read more about setting the version of your analysis in the MICrONS tutorials.

# see the available materialization versions
client.materialize.get_versions()
[1300, 1078, 117, 661, 343, 1181, 795, 943, 1412, 1507]

And these are their associated timestamps (all timestamps are in UTC):

for version in client.materialize.get_versions():
    print(f"Version {version}: {client.materialize.get_timestamp(version)}")
Version 1300: 2025-01-13 10:10:01.286229+00:00
Version 1078: 2024-06-05 10:10:01.203215+00:00
Version 117: 2021-06-11 08:10:00.215114+00:00
Version 661: 2023-04-06 20:17:09.199182+00:00
Version 343: 2022-02-24 08:10:00.184668+00:00
Version 1181: 2024-09-16 10:10:01.121167+00:00
Version 795: 2023-08-23 08:10:01.404268+00:00
Version 943: 2024-01-22 08:10:01.497934+00:00
Version 1412: 2025-04-29 10:10:01.200893+00:00
Version 1507: 2025-07-31 08:10:01.117494+00:00
# set materialization version, for consistency
client.version = 1507 # current public as of 7/31/2025

CAVEclient Basics#

The most frequent use of the CAVEclient is to query the database for annotations like synapses. All database functions are under the client.materialize property. To see what tables are available, use the get_tables function:

client.materialize.get_tables()
['baylor_gnn_cell_type_fine_model_v2',
 'nucleus_alternative_points',
 'allen_column_mtypes_v2',
 'bodor_pt_cells',
 'aibs_metamodel_mtypes_v661_v2',
 'allen_v1_column_types_slanted_ref',
 'aibs_column_nonneuronal_ref',
 'nucleus_ref_neuron_svm',
 'apl_functional_coreg_vess_fwd',
 'vortex_compartment_targets',
 'baylor_log_reg_cell_type_coarse_v1',
 'gamlin_2023_mcs',
 'l5et_column',
 'pt_synapse_targets',
 'coregistration_manual_v4',
 'cg_cell_type_calls',
 'synapses_pni_2',
 'nucleus_detection_v0',
 'vortex_manual_nodes_of_ranvier',
 'bodor_pt_target_proofread',
 'nucleus_functional_area_assignment',
 'coregistration_auto_phase3_fwd_apl_vess_combined_v2',
 'vortex_thalamic_proofreading_status',
 'multi_input_spine_predictions_ssa',
 'synapse_target_structure',
 'proofreading_status_and_strategy',
 'coregistration_auto_phase3_fwd_v2',
 'vortex_peptidergic_proofreading_status',
 'digital_twin_properties_bcm_coreg_v4',
 'vortex_astrocyte_proofreading_status',
 'digital_twin_properties_bcm_coreg_auto_phase3_fwd_v2',
 'digital_twin_properties_bcm_coreg_apl_vess_fwd',
 'gamlin_2023_mcs_met_types',
 'vortex_manual_myelination_v0',
 'synapse_target_predictions_ssa',
 'aibs_metamodel_celltypes_v661']

For each table, you can see the metadata describing that table. For example, let’s look at the nucleus_detection_v0 table:

client.materialize.get_table_metadata('nucleus_detection_v0')
{'schema': 'nucleus_detection',
 'table_name': 'nucleus_detection_v0',
 'created': '2020-11-02T18:56:35.530100',
 'id': 71748,
 'aligned_volume': 'minnie65_phase3',
 'valid': True,
 'schema_type': 'nucleus_detection',
 'user_id': '121',
 'description': 'A table of nuclei detections from a nucleus detection model developed by Shang Mu, Leila Elabbady, Gayathri Mahalingam and Forrest Collman. Pt is the centroid of the nucleus detection. id corresponds to the flat_segmentation_source segmentID. Only included nucleus detections of volume>25 um^3, below which detections are false positives, though some false positives above that threshold remain. ',
 'notice_text': None,
 'reference_table': None,
 'flat_segmentation_source': 'precomputed://https://bossdb-open-data.s3.amazonaws.com/iarpa_microns/minnie/minnie65/nuclei',
 'write_permission': 'PRIVATE',
 'read_permission': 'PUBLIC',
 'last_modified': '2022-10-25T19:24:28.559914',
 'segmentation_source': '',
 'pcg_table_name': 'minnie3_v1',
 'last_updated': '2025-08-22T22:00:00.077663',
 'voxel_resolution': [4.0, 4.0, 40.0]}

You get a dictionary of values. Two fields are particularly important: the description, which offers a text description of the contents of the table and voxel_resolution which defines how the coordinates in the table are defined, in nm/voxel.

Querying Tables#

To get the contents of a table, use the query_table function. This will return the whole contents of a table without any filtering, up to for a maximum limit of 200,000 rows. The table is returned as a Pandas DataFrame and you can immediately use standard Pandas function on it.

cell_type_df = client.materialize.query_table('nucleus_detection_v0')
cell_type_df.head()
id created superceded_id valid volume pt_supervoxel_id pt_root_id pt_position bb_start_position bb_end_position
0 730537 2020-09-28 22:40:41.780734+00:00 NaN t 32.307937 0 0 [381312, 273984, 19993] [nan, nan, nan] [nan, nan, nan]
1 373879 2020-09-28 22:40:41.781788+00:00 NaN t 229.045043 96218056992431305 864691136090135607 [228816, 239776, 19593] [nan, nan, nan] [nan, nan, nan]
2 601340 2020-09-28 22:40:41.782714+00:00 NaN t 426.138010 0 0 [340000, 279152, 20946] [nan, nan, nan] [nan, nan, nan]
3 201858 2020-09-28 22:40:41.783784+00:00 NaN t 93.753836 84955554103121097 864691135373893678 [146848, 213600, 26267] [nan, nan, nan] [nan, nan, nan]
4 600774 2020-09-28 22:40:41.785273+00:00 NaN t 135.189791 0 0 [339120, 276112, 19442] [nan, nan, nan] [nan, nan, nan]

Important

While most tables are small enough to be returned in full, the synapse table has hundreds of millions of rows and is too large to download this way

Tables have a collection of columns, some of which specify point in space (columns ending in _position), some a root id (ending in _root_id), and others that contain other information about the object at that point. Before describing some of the most important tables in the database, it’s useful to know about a few advanced options that apply when querying any table.

  • desired_resolution : This parameter allows you to convert the columns specifying spatial points to different resolutions. Many tables are stored at a resolution of 4x4x40 nm/voxel, for example, but you can convert to nanometers by setting desired_resolution=[1,1,1].

  • split_positions : This parameter allows you to split the columns specifying spatial points into separate columns for each dimension. The new column names will be the original column name with _x, _y, and _z appended.

  • select_columns : This parameter allows you to get only a subset of columns from the table. Once you know exactly what you want, this can save you some cleanup.

  • limit : This parameter allows you to limit the number of rows returned. If you are just testing out a query or trying to inspect the kind of data within a table, you can set this to a small number to make sure it works before downloading the whole table. Note that this will show a warning so that you don’t accidentally limit your query when you don’t mean to.

For example, using all of these together:

cell_type_df = client.materialize.query_table('nucleus_detection_v0', 
                                              split_positions=True, 
                                              desired_resolution=[1,1,1], 
                                              select_columns=['pt_position', 'pt_root_id'], 
                                              limit=10)
cell_type_df
201 - "Limited query to 10 rows
pt_position_x pt_position_y pt_position_z pt_root_id
0 241856.0 374464.0 838720.0 0
1 227200.0 389120.0 797160.0 0
2 230144.0 422336.0 795320.0 0
3 239488.0 386432.0 794120.0 0
4 239744.0 423488.0 803120.0 864691136050815731
5 245888.0 384512.0 800120.0 0
6 249792.0 391680.0 807080.0 0
7 243328.0 403008.0 794280.0 0
8 247872.0 386816.0 805320.0 0
9 260352.0 416640.0 802360.0 864691135013273238

Filtering Queries#

Filtering tables so that you only get data about certain rows back is a very common operation. While there are filtering options in the query_table function (see documentation for more details), a more unified filter interface is available through a “table manager” interface. Rather than passing a table name to the query_table function, client.materialize.tables has a subproperty for each table in the database that can be used to filter that table. The general pattern for usage is

client.materialize.tables.{table_name}({filter options}).query({format and timestamp options})

where {table_name} is the name of the table you want to filter, {filter options} is a collection of arguments for filtering the query, and {format and timestamp options} are those parameters controlling the format and timestamp of the query.

For example, let’s look at the table aibs_metamodel_celltypes_v661, which has cell type predictions across the dataset. We can get the whole table as a DataFrame:

cell_type_df = client.materialize.tables.aibs_metamodel_celltypes_v661().query()
cell_type_df.head()
The `client.materialize.tables` interface is experimental and might experience breaking changes before the feature is stabilized.
id_ref created_ref valid_ref target_id classification_system cell_type id created valid volume pt_supervoxel_id pt_root_id pt_position bb_start_position bb_end_position
0 36916 2023-12-19 22:47:18.659864+00:00 t 336365 excitatory_neuron 5P-IT 336365 2020-09-28 22:42:48.966292+00:00 t 272.488202 93606511657924288 864691136274724621 [209760, 180832, 27076] [nan, nan, nan] [nan, nan, nan]
1 1070 2023-12-19 22:38:00.472115+00:00 t 110648 excitatory_neuron 23P 110648 2020-09-28 22:45:09.650639+00:00 t 328.533443 79385153184885329 864691135489403194 [106448, 129632, 25410] [nan, nan, nan] [nan, nan, nan]
2 1099 2023-12-19 22:38:00.898837+00:00 t 112071 excitatory_neuron 23P 112071 2020-09-28 22:43:34.088785+00:00 t 272.929423 79035988248401958 864691136147292311 [103696, 149472, 15583] [nan, nan, nan] [nan, nan, nan]
3 13259 2023-12-19 22:41:14.417986+00:00 t 197927 nonneuron oligo 197927 2020-09-28 22:43:10.652649+00:00 t 91.308851 84529699506051734 864691135655940290 [143600, 186192, 26471] [nan, nan, nan] [nan, nan, nan]
4 13271 2023-12-19 22:41:14.685474+00:00 t 198087 nonneuron astrocyte 198087 2020-09-28 22:41:36.677186+00:00 t 161.744978 83756261929388963 864691135809440972 [137952, 190944, 27361] [nan, nan, nan] [nan, nan, nan]

and we can add similar formatting options as in the last section to the query function:

cell_type_df = client.materialize.tables.aibs_metamodel_celltypes_v661().query(split_positions=True, 
                                                                               desired_resolution=[1,1,1], 
                                                                               select_columns={
                                                                                   'nucleus_detection_v0': ['pt_position', 'pt_root_id'], 
                                                                                   'aibs_metamodel_celltypes_v661': ['cell_type'],
                                                                               },
                                                                               limit=10)
cell_type_df
The `client.materialize.tables` interface is experimental and might experience breaking changes before the feature is stabilized.
201 - "Limited query to 10 rows
pt_position_x pt_position_y pt_position_z pt_root_id cell_type
0 257600.0 487936.0 802760.0 864691135724233643 23P
1 260992.0 493568.0 801560.0 864691136436395166 23P
2 256256.0 466432.0 831040.0 864691135462260637 NGC
3 255744.0 480640.0 833200.0 864691136723556861 23P
4 262144.0 505856.0 824880.0 864691135776658528 23P
5 257536.0 521728.0 804440.0 864691135941166708 23P
6 251840.0 552896.0 832320.0 864691135545065768 23P
7 251136.0 546048.0 821320.0 864691135479369926 23P
8 256000.0 626368.0 814000.0 864691135697633557 23P
9 324096.0 417920.0 658880.0 864691135937358133 astrocyte

However, now we can also filter the table to get only cells that are predicted to have cell type "BC" (for “basket cell”).

my_cell_type = "BC"
client.materialize.tables.aibs_metamodel_celltypes_v661(cell_type=my_cell_type).query()
The `client.materialize.tables` interface is experimental and might experience breaking changes before the feature is stabilized.
id created valid volume pt_supervoxel_id pt_root_id id_ref created_ref valid_ref target_id classification_system cell_type pt_position bb_start_position bb_end_position
0 369908 2020-09-28 22:40:41.814964+00:00 t 332.862751 96002690286851358 864691136276011533 43009 2023-12-19 22:48:53.577191+00:00 t 369908 inhibitory_neuron BC [227104, 207840, 20841] [nan, nan, nan] [nan, nan, nan]
1 193846 2020-09-28 22:40:41.897904+00:00 t 306.148966 82838443188669165 864691135578780933 12051 2023-12-19 22:40:57.133228+00:00 t 193846 inhibitory_neuron BC [131568, 168496, 16452] [nan, nan, nan] [nan, nan, nan]
2 615735 2020-09-28 22:40:41.957345+00:00 t 314.539540 112181247505371364 864691135183493378 83044 2023-12-19 22:58:50.269173+00:00 t 615735 inhibitory_neuron BC [344880, 161104, 17084] [nan, nan, nan] [nan, nan, nan]
3 613047 2020-09-28 22:40:41.982376+00:00 t 242.159780 113234168401651200 864691136065413528 82324 2023-12-19 22:58:39.896999+00:00 t 613047 inhibitory_neuron BC [352688, 141616, 25312] [nan, nan, nan] [nan, nan, nan]
4 402885 2020-09-28 22:40:41.994716+00:00 t 279.232348 97621720621533350 864691135645529583 48951 2023-12-19 22:50:24.710643+00:00 t 402885 inhibitory_neuron BC [238848, 211712, 16471] [nan, nan, nan] [nan, nan, nan]
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
3360 170777 2020-09-28 22:45:25.310708+00:00 t 499.103662 81230957054577082 864691135065994564 8968 2023-12-19 22:40:09.246333+00:00 t 170777 inhibitory_neuron BC [119600, 250560, 15373] [nan, nan, nan] [nan, nan, nan]
3361 591219 2020-09-28 22:45:25.526753+00:00 t 567.517839 110216764830845707 864691135279126177 79472 2023-12-19 22:57:53.993099+00:00 t 591219 inhibitory_neuron BC [330320, 204752, 25060] [nan, nan, nan] [nan, nan, nan]
3362 208056 2020-09-28 22:45:25.401800+00:00 t 521.621668 84540007091735344 864691135801456226 15548 2023-12-19 22:41:48.382554+00:00 t 208056 inhibitory_neuron BC [143472, 262944, 23693] [nan, nan, nan] [nan, nan, nan]
3363 438586 2020-09-28 22:45:25.430745+00:00 t 529.501389 99807894274485381 864691135395662581 55791 2023-12-19 22:52:02.582669+00:00 t 438586 inhibitory_neuron BC [254912, 247440, 23680] [nan, nan, nan] [nan, nan, nan]
3364 419363 2020-09-28 22:45:25.436862+00:00 t 530.642698 99716496901116512 864691135954384419 50504 2023-12-19 22:50:48.576826+00:00 t 419363 inhibitory_neuron BC [254416, 90336, 20469] [nan, nan, nan] [nan, nan, nan]

3365 rows × 15 columns

or maybe we just want the cell types for a particular collection of root ids:

my_root_ids = [864691135771677771, 864691135560505569, 864691136723556861]
client.materialize.tables.aibs_metamodel_celltypes_v661(pt_root_id=my_root_ids).query()
The `client.materialize.tables` interface is experimental and might experience breaking changes before the feature is stabilized.
id_ref created_ref valid_ref target_id classification_system cell_type id created valid volume pt_supervoxel_id pt_root_id pt_position bb_start_position bb_end_position
0 11282 2023-12-19 22:40:43.249642+00:00 t 19116 excitatory_neuron 23P 19116 2020-09-28 22:41:51.767906+00:00 t 301.426115 74737997899501359 864691135771677771 [72576, 108656, 20291] [nan, nan, nan] [nan, nan, nan]
1 15681 2023-12-19 22:41:50.365399+00:00 t 21783 excitatory_neuron 23P 21783 2020-09-28 22:41:59.966574+00:00 t 263.637074 75795590176519004 864691135560505569 [80128, 124000, 16563] [nan, nan, nan] [nan, nan, nan]
2 50080 2023-12-19 22:50:42.474168+00:00 t 4074 excitatory_neuron 23P 4074 2020-09-28 22:42:41.341179+00:00 t 313.678234 73543309863605007 864691136723556861 [63936, 120160, 20830] [nan, nan, nan] [nan, nan, nan]

You can get a list of all parameters than be used for querying with the standard IPython/Jupyter docstring functionality, e.g. ?client.materialize.tables.aibs_metamodel_celltypes_v661.

?client.materialize.tables.aibs_metamodel_celltypes_v661

Querying Synapses#

While synapses are stored as any other table in the database, in this case synapses_pni_2, this table is much larger than any other table at more than 337 million rows, and it works best when queried in a different way. The synapse_query function allows you to query the synapse table in a more convenient way than most other tables.

In particular, the pre_ids and post_ids let you specify which root id (or collection of root ids) you want to query, with pre_ids indicating the collection of presynaptic neurons and post_ids the collection of postsynaptic neurons.

Using both pre_ids and post_ids in one call is effectively a logical AND, returning only those synapses from neurons in the list of pre_ids that target neurons in the list of post_ids. This can be especially useful if you want to find the connectivity between only the proofread cells, for example

Let’s look at one particular example.

my_root_id = 864691136968109774
syn_df = client.materialize.synapse_query(pre_ids=my_root_id)
print(f"Total number of output synapses for {my_root_id}: {len(syn_df)}")
syn_df.head()
Total number of output synapses for 864691136968109774: 1499
id created superceded_id valid size pre_pt_supervoxel_id pre_pt_root_id post_pt_supervoxel_id post_pt_root_id pre_pt_position post_pt_position ctr_pt_position
0 158405512 2020-11-04 06:48:59.403833+00:00 NaN t 420 89385416926790697 864691136968109774 89385416926797494 864691135546540484 [179076, 188248, 20233] [179156, 188220, 20239] [179140, 188230, 20239]
1 185549462 2020-11-04 06:49:10.903020+00:00 NaN t 4832 91356016507479890 864691136968109774 91356016507470163 864691135884799088 [193168, 190452, 19262] [193142, 190404, 19257] [193180, 190432, 19254]
2 138110803 2020-11-04 06:49:46.758528+00:00 NaN t 3176 87263084540201919 864691136968109774 87263084540199587 864691135448518996 [163440, 104292, 19808] [163498, 104348, 19806] [163460, 104356, 19804]
3 157378264 2020-11-04 07:38:27.332669+00:00 NaN t 412 89374490395905686 864691136968109774 89374490395921430 864691135446953106 [179218, 107132, 19372] [179204, 107010, 19383] [179196, 107072, 19380]
4 148262628 2020-11-04 06:53:27.294021+00:00 NaN t 3536 88189766885093187 864691136968109774 88189835604584343 864691135250533976 [170154, 193170, 21123] [170046, 193240, 21123] [170118, 193220, 21128]

Note that synapse queries always return the list of every synapse between the neurons in the query, even if there are multiple synapses between the same pair of neurons.

A common pattern to generate a list of connections between unique pairs of neurons is to group by the root ids of the presynaptic and postsynaptic neurons and then count the number of synapses between them. For example, to get the number of synapses from this neuron onto every other neuron, ordered

syn_df.groupby(
    ['pre_pt_root_id', 'post_pt_root_id']
).count()[['id']].rename(
    columns={'id': 'syn_count'}
).sort_values(
    by='syn_count',
    ascending=False,
)
# Note that the 'id' part here is just a way to quickly extract one column.
# This could be any of the remaining column names, but `id` is often convenient because it is common to all tables.
syn_count
pre_pt_root_id post_pt_root_id
864691136968109774 864691135280056225 20
864691135456207722 16
864691134949547516 15
864691135784316467 13
864691135884930672 11
... ...
864691135503112029 1
864691135511524816 1
864691135516460996 1
864691135516672708 1
864691135684221938 1

1035 rows × 1 columns

Querying Proofread neurons#

Proofread neurons#

Proofreading is necessary to obtain accurate reconstructions of a cell. Read more about proofreading and data quality here

The proofreading information for both MICrONS and V1DD is stored in a table called: proofreading_status_and_strategy.

proof_all_df = client.materialize.query_table("proofreading_status_and_strategy", 
                                              desired_resolution=[1, 1, 1], 
                                              split_positions=True)
proof_all_df["strategy_axon"].value_counts()
axon_partially_extended    1750
axon_fully_extended         267
axon_interareal             124
none                         41
Name: strategy_axon, dtype: int64

Filtering Queries by proofreading status#

We can filter our query to only return rows that match a condition by adding a filter to our query:

proof_axon_df = client.materialize.query_table("proofreading_status_and_strategy", 
                                               filter_in_dict={"strategy_axon": ["axon_partially_extended", "axon_fully_extended", "axon_interareal"]}, 
                                               desired_resolution=[1, 1, 1], 
                                               split_positions=True)
proof_axon_df.tail()
id created superceded_id valid pt_position_x pt_position_y pt_position_z valid_id status_dendrite status_axon strategy_dendrite strategy_axon pt_supervoxel_id pt_root_id
2136 4002 2025-07-22 18:26:32.791280+00:00 NaN t 703680.0 416064.0 907280.0 864691135783113040 t t dendrite_extended axon_fully_extended 88951866083486311 864691135783113040
2137 3969 2025-07-22 18:26:32.196312+00:00 NaN t 685568.0 697920.0 931040.0 864691136313908797 t t dendrite_extended axon_fully_extended 88328030740880370 864691135928941780
2138 4003 2025-07-22 18:26:32.804932+00:00 NaN t 638976.0 477440.0 867480.0 864691135493371743 t t dendrite_extended axon_fully_extended 86702127719919273 864691135442616392
2139 3951 2025-07-22 18:26:31.880460+00:00 NaN t 729600.0 551424.0 922920.0 864691135398557473 t t dendrite_extended axon_fully_extended 89871195310210159 864691135360909656
2140 3999 2025-07-22 18:26:32.748278+00:00 NaN t 801024.0 834304.0 879280.0 864691135271848613 t t dendrite_extended axon_fully_extended 92343584443356753 864691135389004929

A more unified filter interface is available through a “table manager” interface.

Rather than passing a table name to the query_table function, client.materialize.tables has a subproperty for each table in the database that can be used to filter that table.

The general pattern for usage is

client.materialize.tables.{table_name}({filter options}).query({format and timestamp options})

where {table_name} is the name of the table you want to filter, {filter options} is a collection of arguments for filtering the query, and {format and timestamp options} are those parameters controlling the format and timestamp of the query.

With this, we can easily query all proofread cells with proofread axons:

proof_axon_df = client.materialize.tables.proofreading_status_and_strategy(
    strategy_axon=["axon_partially_extended", "axon_fully_extended", "axon_interareal"]
).query(
    select_columns=['pt_root_id','status_axon','status_dendrite','strategy_axon','strategy_dendrite'],
)
proof_axon_df.tail()
pt_root_id status_axon status_dendrite strategy_axon strategy_dendrite
2136 864691135783113040 t t axon_fully_extended dendrite_extended
2137 864691135928941780 t t axon_fully_extended dendrite_extended
2138 864691135442616392 t t axon_fully_extended dendrite_extended
2139 864691135360909656 t t axon_fully_extended dendrite_extended
2140 864691135389004929 t t axon_fully_extended dendrite_extended

From here, you can combine the proofreading information (indexed on pt_root_id) with either a Cell Types (matched on pt_root_id) or a Synapse table (matched on pre_pt_root_id for outputs of the cell, post_pt_root_id for inputs to the cell)